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Background 

Complex decisions are typically informed by a wide range of factors, drawing on multiple 

information sources. This can involve having to assemble and assess substantial amounts of 

evidence. Decisions are then made on the basis of judgments about the quality and reliability of 

that evidence and the extent to which it provides confidence in a given interpretation. A familiar 

example is the way in which evidence is taken into account in a legal trial; the jury is required to 

examine all the evidence presented to them, and then to make judgments about the extent to 

which the evidence supports the case made by the trial lawyers. 

Similar questions are faced in more technical disciplines, such as in the use of available data 

(and interpretations of such data) to support particular concepts or hypotheses. In the geological 

field, for example, a variety of sources of evidence may be collected together and analysed in 

determining mineral extraction prospects or, say, in developing a conceptual model for the 

hydrogeology of a given region. Evidence can come from a wide range of sources, including 

apparently “hard” quantitative data or the results of quantitative modelling, alongside analogue 

reasoning, expert judgments and the value judgments of different stakeholder groups.  

Moreover, whilst there may be a large volume of information relating to the decision at hand, it 

may on the whole be only of partial relevance, incomplete and/or uncertain, or even conflicting in 

terms of the level of support it provides for a given interpretation. The range of available 

evidence may appear to give an indistinct picture, with no clear indication of how best to target 

resources to improve understanding. There may be disputed interpretations, perhaps because 

some practitioners appear to be biased by excessive reliance on a particular source of evidence 

in the face of contradictory, or seemingly more equivocal, evidence from elsewhere. Hence, in 

order to provide a justified interpretation of the available evidence, which can be audit-traced 

from start to finish, it is necessary to examine and make visible confidence judgments on both 

the quality of the data and the quality of the interpretation and modelling process. 

The technique of Evidence Support Logic (ESL), implemented in Quintessa’s TESLA software
1
  

is intended to support decision makers and modellers in their sense-making when faced with 

extensive information processing requirements. In summary, ESL involves systematically 

breaking down the question or hypothesis under consideration into a logical hypothesis model 

the elements of which expose basic judgments and opinions relating to the quality of evidence 

associated with a particular interpretation or proposition, in addition to establishing the level of 

confidence that can be placed in the relevant judgments. By independently evaluating 

confidence “for” and “against” propositions on the basis of evidence, uncertainty (and/or conflict) 

is captured and the sensitivity of the results to that uncertainty can be evaluated.  

This document aims to describe the ESL methodology; how to construct a logical hypothesis 

model; how to quantify confidence on the basis of gathered evidence; the method that ESL uses 

to propagate confidence up the hierarchical structure of the model to produce a solution; various 

ways of visualising data within the model; and finally provides a brief overview of the 

implementation of ESL within the TESLA software.  

                                                        

1
 Further information about the implementation of ESL within the TESLA software can be found 

in the TESLA User Guide, the latest version of which can be downloaded via the Quintessa 

website:    http://www.quintessa.org/software/TESLA/ 

http://www.quintessa.org/software/TESLA/
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A list of example applications of ESL (not necessarily using the TESLA software) is given 

towards the end of this document. Finally, a Glossary of Terms is also provided. 

Benefits of ESL 

Arguably, the greatest value of analysing uncertainty through developing an evidence-based 

logical hypothesis model is not so much in achieving a precise understanding of the knowledge 

inputs, or providing an absolute assessment of the degree of assurance supporting a particular 

proposition or hypothesis, but in identifying those uncertainties that have the greatest impact on 

overall confidence (Bowden, 2004). 

Sensitivity analysis based on an ESL model helps to identify where future investigation and 

evidence gathering is likely to have the greatest impact in reducing uncertainty due to lack of 

knowledge. This may be particularly valuable, for instance, when limited resources are available 

and prioritisation judgements need to be made concerning the acquisition of further data to 

improve the quality of decision making. Where there is too much uncertainty for a particular 

hypothesis or model to be accepted or refuted, a systematic evidence-based evaluation of 

confidence therefore allows identification of the source(s) of uncertainty and hence possibilities 

for the targeting resources to improve confidence. 

In addition, the outcome of parallel evidence-based analyses of alternative hypotheses (such as, 

for example, different conceptual models for the features and characteristics of a particular 

process system) can help in comparing relative levels of confidence in those alternatives. The 

impact of new understanding gained from additional evidence can then be evaluated in terms of 

its effect on the confidence that may be placed in each alternative, and hence on the extent to 

which one may be preferred over another. 

As with all decision support tools and processes, ESL neither replaces the need for judgment 

nor eliminates subjectivity from the evaluation and interpretation of evidence. However, a 

systematic approach, breaking the problem down into a logical model whose elements expose 

essential judgments and opinions relating to that evidence, can lend a measure of structure and 

transparency to that appraisal. This, in turn, helps to ensure there is comprehensive coverage of 

relevant factors and uncertainties, and that an audit trail is established for the judgments that 

need to be made. Thus, for example, where there is potential for bias in a decision, the 

systematic evaluation of evidence can help to demonstrate how such bias has arisen and what 

its implications might be. 

Key Steps in ESL 

ESL has been developed from a methodology described by researchers at Bristol University 

(Cui and Blockley, 1990; Foley et al., 1997; Hall et al., 1998; Blockley and Godfrey, 2000; Davis 

and Hall, 2003) and subsequently adapted by Bowden (2004), primarily for application in the 

field of modelling interpretation. The technique seeks to build confidence in decisions based on 

a comprehensive and systematic identification of all potentially relevant evidence and the formal 

evaluation of that evidence.  

At its core, ESL involves four main steps: 

1. Development of a hierarchical logical hypothesis model to provide a common, coherent 

structure for assembling and assessing all the evidence that is relevant to an identified “root” 

(or top-level) hypothesis (or proposition); 
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2. Parameterisation of the logical model and identification and assessment of sources of 

evidence that contribute confidence for and/or against “child” hypotheses in the model;  

3. Propagation of confidence, on the basis of judgments on evidence, through the logical 

model, representing uncertainty by separately propagating independent judgments on 

evidence for and against hypotheses using the principles of Interval Probability Theory (Cui 

& Blockley, 1990), to provide an assessment of confidence in the overall root hypothesis; 

and 

4. Analysis and visualisation of the logical hypothesis model and its outcomes by, for example, 

examining the sensitivity of the confidence at the top level (root hypothesis) to confidence 

values at the bottom level (“leaf” hypotheses).  

As noted by Davis and Hall (2003), the feasibility of such a systematic approach is greatly 

enhanced by the use of software to support model construction, knowledge recording and 

uncertainty handling. Quintessa has designed and developed the TESLA software tool for this 

purpose, with an emphasis on the ability to manipulate the hierarchical structure of a decision as 

it evolves and providing tools for efficiently analysing the model. 

In what follows, the principles that underpin the steps outlined above are briefly described in 

turn.  

Step 1: The Logical Hypothesis Model 

ESL involves evaluating the support for an identified root (or top) hypothesis that is provided by 

a number of logical child hypotheses, each of which can be associated with some fraction of the 

underlying basic evidence. A logical hypothesis hierarchy (or tree) links the root hypothesis to 

data or information at the lowest level (that is, to leaf hypotheses), usually via a series of 

intermediate hypotheses, representing logical lines of reasoning. A chain of “parent” and 

supporting child hypotheses links the root hypothesis to each leaf hypothesis and is termed a 

“branch” of the tree. At each level of the tree, child hypotheses that have the same parent are 

termed sibling hypotheses. 

The example shown in Figure 1 demonstrates the general principles associated with defining 

such a hypothesis model. In this case, the specified root hypothesis relates to testing the 

proposition that a particular location may be suitable for more detailed investigation as part of a 

technical evaluation protocol relating to the siting of a deep sub-surface radioactive-waste 

disposal facility. 
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Figure 1: Simplified example of an evidence-based hypothesis model showing site-specific 
factors for assessing the suitability of a site for inclusion in a detailed investigation. 

In this example, the root hypothesis (“The site is suitable for detailed investigation”) is too 

substantial and vague to be answered directly and needs to be broken down in order to provide 

better definition of the decision problem and to understand the various contributing factors. 

Figure 1 therefore illustrates an initial decomposition into eight contributory leaf hypotheses that 

together determine the confidence in the root hypothesis. The general principle at each step in 

developing the hierarchical model is to undertake a comprehensive top-down analysis of the 

various factors that contribute to a hypothesis, until a level of detail is reached at which people 

are comfortable in providing direct judgments about evidence in terms of the level of support that 

it provides for and against the child hypothesis in question. The example given in Figure 1 does 

not break down the hypotheses into sufficient detail for this purpose. Figure 2 shows how just 

one of the eight child hypotheses (“Risk of hydrothermal activity at depth due to magmatism is 

low”) can be developed further to a level at which it may be judged that relevant evidence can 

be brought to bear. 

Children of the Root Hypothesis. 

Parents of Leaf Hypotheses. 

Sibling Hypotheses. 

Assessing suitability of site for detailed investigation 

1.  Uplift will be less than 300m in 

next 100,000 years 

2.  Site is not within range of 

active fault zone 

3.  Site is not within zone of 

potential fault reactivation 

4.  Site is not within active 

volcanic area 

5.  Risk from direct magma 

intrusion is low 

6.  Risk of hydrothermal activity at 

depth due to magmatism is low 

7.  The host rocks are all 

consolidated 

8.  There are no viable mineral 

resources 

Future uplift and 

erosion will not be 

prohibitive 

Future fault 

activity will not be 

prohibitive 

Future igneous 

activity will not be 

prohibitive 

Host rock geology 

is suitable 

The site is 

suitable for 

detailed 

investigation 

Root Hypothesis 
Leaf Hypotheses 
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Inevitably, the structure that is adopted in developing a logical hypothesis model is somewhat 

subjective, in so far as there may be a number of alternative ways of defining a comprehensive 

top-down hierarchy. Ideally, the model should therefore be determined by one or more 

specialists in the relevant field. Several approaches are available to do this, depending upon the 

nature of the information, the numbers of the experts and their specialities. A common approach 

is for a single person acting as a facilitator to lead the construction of a hypothesis model in a 

meeting or meetings involving the experts. At each stage, the structure can then be debated 

until a consensus is reached. Alternatively, a central process organiser can arrange for 

independent experts, or small groups of experts, to contribute to the development of particular 

aspects of the tree, with subsequent review, analysis and challenge by a second expert or set of 

experts. Sometimes, a combination of these two approaches can prove effective. 

For each leaf hypothesis on which a judgment of confidence on the basis of evidence is 

required, it is important to guide that judgment by a clear description of the child hypothesis in 

question and the identification of criteria for its “success”. The success criteria effectively define 

an agreed standard against which confidence in the child hypothesis can be assessed, based 

on the available evidence. This standard therefore defines the circumstances under which a 

hypothesis would be considered completely true. Within the example shown in Figure 2, the 

inset text box describes these attributes for one of the model child hypotheses (“The Anion 

Index is low”). As lines of reasoning establishing confidence “for” and “against” hypotheses are 

handled independently, in practice “failure” criteria are typically also specified; note that 

sometimes evidence for “failure” can be different to an absence of evidence for “success”, as 

absence of evidence leading to a lack of confidence in success may imply uncertainty, not 

confidence in failure. 

It can also be helpful at this stage to identify and record the relevant types and sources of 

information that can later be used to assess the confidence in the child hypothesis in question, 

according to the extent of its support for (or argument against) the success of the root 

hypothesis. 
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6.11 

6.16 

6.15 

6.9 

6.8 

6.10 

6.4 Regional geothermal gradient is low 

 

6.16 There are no low pH (<4.8) 

groundwaters in boreholes 

……………………………………. 

hydrothermal activity 

6.7 The site is far from volcanoes 

6.6 There are no hot springs and other surface indicators 

6.4 Subsurface temperatures are insufficiently elevated 

6.5 Mineral assemblages in rocks indicate low geothermal gradients 

6.14 Hydraulic properties of 

rocks are suggestive of low 

flow rates  

6 

6.1 

6.2 

6.3 

6.12 

6.13 

6.14 

6.19 

6.18 

6.17 

6.4 

6.5 

6.6 

6.7 

6.17 The Anion Index is low 

6.17 The Anion Index is low 

Description: The Anion Index (A.I.) (Noda, 1987) is an indicator for estimating 

the proximity of water to a centre of geothermal activity. The A.I. is calculated 

from the major anion composition of a hot spring water according to the 

following: 

A.I. = 0.5 x ( SO4 / (Cl + SO4) + (Cl + SO4) / (Cl + SO4 + HCO3) ) 

The A.I. is around unity in areas where geothermal activity is highest and 

decreases with distance away from the centre of activity. 

Success criteria: The hypothesis will be considered successful if it is 

demonstrated from analysis of spring waters in the vicinity of the site that the 

area has a low value of A.I. indicative of distance from the centre of geothermal 

activity associated with the nearest magma source. 

6. Risk of hydrothermal activity at depth due to 

magmatism is low 

6.1 Regional geothermal 

gradient is low 

6.18 Geological structures have low  transmissivities   

suggestive of low  flow rates  

6.19 Lithologies have low hydraulic conducitivies 

suggestive of low flow rates  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Nested hypothesis model showing lower level of the tree for which evidence of support 
for and evidence against must be specified. 

Step 2a: Model Parameterisation 

Before evidence can be assessed and associated confidence can be input to the hierarchical 

hypothesis model, it is necessary to describe and parameterise the logic by which that 

confidence is propagated upwards through the model in order to assess the extent of support for 

the root hypothesis. As noted earlier, the mathematical basis of the ESL methodology is an 

approach known as Interval Probability Theory (IPT). A comprehensive discussion of IPT and 

the inference propagation calculus that has been developed from the theory is provided by Cui 

and Blockley (1990). For present purposes, the aim is simply to outline some major elements of 

the quantitative methodology, in order to enable a better understanding of the model 

parameterisation process. This covers three main aspects:  

 the concept of three-value logic, which provides for an explicit recognition of uncertainty 

in evidential judgments;  

 the parameterisation of relationships between hypotheses in the hypothesis model, 

expressed in terms of their sufficiency, dependency and necessity, or alternatively 

logical arguments that act on groups of hypotheses representing lines of reasoning; and 
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 the basis for defining evidential judgments to enable assessment of the confidence in 

child hypotheses at the base of the hierarchical model. 

Three-value Logic 

Evidential judgments based on classical probability theory follow two-value logic, whereby 

confidence that a hypothesis is true is associated with the probability that it is true. As a result, 

lack of confidence in favour of a hypothesis implicitly represents confidence in its falsehood, and 

cannot be set independently. This is sometimes described as a “closed world” perspective, in 

which confidence “for” and “against” are treated as complementary concepts (i.e. p(A) + p(not A) 

= 1, where p(A) is the probability of event A occurring, or in other words the confidence 

supporting the occurrence of A). In this classical case, uncertainty is represented only by the fact 

that a probability has been assigned to the hypothesis, so that excluding extreme cases, it can 

be considered that there is confidence both for and against it. 

Three-value logic, which is employed by ESL, extends this to allow the independent evaluation 

of the extent to which the evidence provides confidence “for” and “against” each hypothesis. 

Whilst the judgments “for” and “against” will be made on the basis of the same overall evidence 

base, they are made independently. This means that confidence “for” and confidence “against” 

need not sum to 1. 

Representation of Uncertainty 

In three-value logic, the sum of confidence “for” and confidence “against” does not have to equal 

1. This is because three-value logic allows for a measure of residual uncertainty due to 

“uncommitted” or “overcommitted confidence”. Uncertainty due to “uncommitted confidence” 

recognises that confidence in a hypothesis may be only partial and that some level of 

confidence may be assigned to an uncommitted state. In contrast, “overcommitted confidence” 

arises when the people making a judgment place too much confidence in evidence for and / or 

against a hypothesis. This means that the judged confidence for and confidence against, when 

represented on a scale of 0 to 1, actually sum to greater than 1.   

“Residual uncertainty” due to uncommitted confidence is handled as an “interval” that enables 

the admission of a general level of uncertainty (Waltz, 1989), providing a recognition that 

information and judgments may be incomplete and possibly inconsistent (i.e. residual 

uncertainty due to uncommitted confidence = 1 - confidence for - confidence against, when 

confidence for + confidence against < 1). This is illustrated in Figure 3, which adopts the so-

called “Italian flag” representation of three-value logic, in which confidence for a hypothesis is 

represented as green, confidence against as red, and residual uncertainty due to uncommitted 

confidence is white (Blockley and Godfrey, 2000).  
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Figure 3: Classical two-value probability analysis compared with three-valued interval analysis. 

As noted previously with the three-value formalism, confidence for and confidence against are 

evaluated independently, with confidence values relating to those judgments each ranging from 

0 to 1, and with residual uncertainty due to uncommitted confidence taking a value from 0 to 1. 

Residual uncertainty due to uncommitted confidence of 1 implies that there is no evidence at all 

on which to base a judgment (or that the evidence that appears to exist is evaluated as being 

entirely unreliable). As an alternative to the Italian flag representation, the values may be simply 

represented in the triplet form [confidence for, residual uncertainty due to uncommitted 

confidence, confidence against], for example [0.28, 0.42, 0.30]. 

ESL thus represents two key aspects of uncertainty in confidence “for” a hypothesis; the elicited 

confidence against it, where the uncertainty can be allocated to evidence; and the residual 

uncertainty that cannot be allocated, represented by the “white space”.  

Positive values for residual uncertainty are typically termed “uncommitted confidence”, 

recognising the potential for further improvement in confidence on the basis of, for example, new 

evidence. As noted above, the ESL approach also allows for “overcommitted confidence”, which 

occurs when elicited or propagated values for confidence on the basis of evidence total more 

than 1 (i.e. residual uncertainty due to overcommitted confidence = confidence for + confidence 

against - 1). Overcommitted confidence typically represents conflict, either where the evidence 

points in two different directions, or more often where expert judgments on evidence are 

inconsistent. The importance of conflict and the relative priority that needs to be given to 

resolving it can be analysed by understanding its impact on the root hypothesis, and the 

sensitivity of the outcomes to the conflicting judgments made. 

Within the TESLA software, a situation where there are overcommitted confidence judgments 

(say for example [0.78, -0.42, 0.64]) is indicated by a yellow central bar (Figure 4). 

  

0.28 0.72 

                     

Probability 

of truth 

Probability 

of falsehood 

0.30 0.42 0.28 

     

               

        

                          

Confidence 

in success on 

the basis of 

evidence 

Confidence 

in failure on 

the basis of 

evidence 

Residual 

uncertainty due 

to uncommitted 

confidence 

Classical 2-value Probability Logic Confidence-based 3-value Logic, 

with                 
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0.70 

𝐶    

 

𝐶        𝐶    𝐶           

Confidence 

in success on 

the basis of 

evidence 

Confidence 

in failure on 

the basis of 

evidence 

Residual 

uncertainty due 

to 

overcommitted 

confidence 

Overcommitted Confidence 

𝑪 𝑨  𝑪 𝒏𝒐𝒕 𝑨 > 𝟏  

0.30 0.60 

 

 

 

 

 

 

 

 

 

 

Figure 4: Example of overcommitted confidence.  

 

Key Concepts in ESL Tree Parameterisation 

The propagation of confidence through an ESL tree is achieved through the combination of two 

main classes of logical approach: 

 The use of logical operators (or “heuristics”) that select between lines of reasoning on the 

basis of certain rules, in order to establish the key contributions to confidence relevant to a 

particular decision. 

 Application of the concept of sufficiency of judgments to understand the total contribution to 

confidence in a parent hypothesis imparted by its children. 

These two aspects are described below. An illustration of the different concepts described is 

then provided. 

Propagation by Operators (or “Heuristics”) Acting on Lines 
of Reasoning 

ALL child hypotheses required for confidence in the parent (the 

“Weakest Link” heuristic) 

In many situations, confidence in the parent hypothesis is dependent on achieving confidence in 

all of the child hypotheses. 

The ALL operator or heuristic is used to enforce a rule that confidence for (or against) the parent 

is the same as that for the weakest of its children. It represents a situation where all the child 

hypotheses are required collectively to ensure the success (or failure) of the parent, and where 

an absence of confidence for (or against) any one child alone would mean an equivalent 

absence of confidence in the parent. This situation is represented by propagating the minimum 

confidence value for (or against) from the child nodes (Figure 5). This form of logic is often (but 

by no means exclusively) used towards the top levels of a tree, to control integration of 

confidence arising from various lines of reasoning. It reflects an assessment that confidence in 

the parent can be no better than that for the “weakest link” of the child hypotheses, and that 
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there is no “mutual support” i.e. confidence in child nodes does not combine in providing 

confidence in the parent.  

This form of logic is typically used when various lines of reasoning are critical to success of a 

parent, but it is not possible to determine the sufficiency of each to prove the parent (see below) 

because it is not meaningful to consider their impacts on the parent independently. For example, 

regulatory guidance might require that certain lines of reasoning have equal prominence in a 

decision, so that an independent assessment of their impact is not possible. 

ANY child hypotheses sufficient for confidence in the parent (the 
“Strongest Link” heuristic) 

In many situations, any and every single child hypothesis is sufficient on its own to ensure the 

success (or failure) of a given parent hypothesis and each child is independent of the others. 

The ANY operator or heuristic is used to enforce a rule that confidence for (or against) the 

parent is the same as that for the strongest of its children (Figure 5). This is the “strongest link” 

argument whereby if any one of the children is true, then the parent must also be, but 

confidence in the children does not combine to produce overall confidence in the parent higher 

than that for the node that represents the “strongest link”. This latter aspect is important to 

identifying if ANY should be employed rather than just employing a sufficiency value of 1 for 

each of the sibling nodes in the group. ANY leads to the direct propagation of the maximum 

confidence value from among the child nodes. As for the “ALL” operator, this form of logic is 

often (but by no means exclusively) used towards the top levels of a tree, to control integration 

of confidence arising from various different lines of reasoning. 

As for ALL, the ANY operator is often used where it is not meaningful to consider their impacts 

on the parent independently (for example if regulatory guidelines or other decision processes, 

govern the overall confidence that can be attributed to multiple lines of reasoning in supporting a 

decision).  

 

Figure 5: Illustration of use of ALL and ANY operators / heuristics. 

 

Necessity Heuristic 

In recent versions of TESLA (v2.2 and onwards), two necessity algorithms are implemented: 

symmetric and asymmetric. Here, only the newer symmetric algorithm is discussed, as this is 

the current default method. 

The symmetric necessity heuristic allows hypotheses to be identified as necessarily true such 

that, irrespective of their siblings, confidence is required in them to have confidence that their 

parent is true. Alternatively, it can allow some hypotheses to be identified as necessarily false, 

such that irrespective of their siblings, confidence that they are false is required to have 
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confidence that their parent is false. For example, a site for a new supermarket must have 

planning permission. If there is sufficient confidence that this will not be achieved based on 

available evidence, then the site should not be chosen, even if it was perfect in every other 

sense. Therefore, it may be appropriate to mark a child hypothesis identifying that “The 

supermarket will acquire planning permission” as necessarily true. 

The confidence values of necessary hypotheses are subject to a threshold test. If a necessarily 

true hypothesis fails by exceeding a threshold associated with confidence “against” then the 

confidence value against the parent will be set so that it is at least as large as that for the 

necessary hypothesis (Figure 6). If a necessarily true hypothesis fails a test by not meeting the 

confidence for threshold, then the confidence value for the parent will be set so that it is no 

greater than that of the necessary hypothesis (Figure 6). In each case, the mirror-image will 

apply for a necessarily false hypothesis. 

For each of these tests, if confidence for / against does not cause failure compared to the 

threshold, then normal propagation rules for the confidence for / against apply. 

For hypotheses that are necessarily true if its parent is to be true, confidence for must meet or 

exceed 0.5 to pass the confidence for necessity test and confidence against must not exceed 

0.5 to pass the confidence against necessity test. For hypotheses that are necessarily false if its 

parent is to be false, confidence against must meet or exceed 0.5 to pass the confidence 

against necessity test and confidence for must not exceed 0.5 to pass the confidence for 

necessity test. 

 

 

 

 

 

 

 

Figure 6: Illustration of use of the necessity heuristic. 

 

Sufficiency and Dependency  

Other than for aspects of a tree for which logical operators described above are appropriate, the 

fundamental approach to the propagation of confidence is based on Interval Probability Theory 

(IPT), which maps confidence values to a range of probabilities for which a hypothesis is true, 

and which then propagates the confidence values using probabilistic logic 

The basic algorithm combines confidence from child hypotheses using such that the confidence 

in the parent is always greater than (or equal to) the contribution from any child on its own. The 

effect is additive, such that two separate lines of reasoning that both support (or refute) a 

proposition reinforce each other, with the combination being more supportive than either source 

of confidence taken individually. Even where uncertainty is present with respect to the individual 

items of contributing evidence, the application of fragments of knowledge from each element 

allows confidence in the proposition to be increased, thereby reducing uncertainty overall. 
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The basis of IPT is the assumption that confidence in the truth of a proposition can be modelled 

as a lower-bound on the probability that it is true (and, by symmetry, that one minus confidence 

in the falsehood of a proposition can be modelled as an upper bound on the probability that it is 

true). This establishes a link between confidence as assessed by the user, and the underlying 

probability theory. 

For multiple lines of reasoning it is necessary to consider the how confidence in a hypothesis is 

impacted by contributions from each line of reasoning represented by its child hypotheses, while 

accounting for overlap in confidence due to shared evidence judgements to ensure there is no 

double counting. In practice, the combination of confidence is modified by two factors: 

sufficiency, and dependency. 

At every branch within the hierarchical hypothesis model, each child hypothesis is assigned 

sufficiency values that dictate how important it is to determining the combined confidence of its 

parent hypothesis. Within TESLA, two separate values for this parameter may be assigned, 

representing the designated sufficiency of the child hypothesis both for and against the success 

of the parent hypothesis. In effect, when determining the sufficiency of a child hypothesis, 

consideration is given to its overall relevance to making judgments about confidence in the 

parent hypothesis. This is equivalent to asking the question: 

If it were assumed that there is complete confidence for/against the child hypothesis (alone), 

how much confidence would there be for/against the parent hypothesis? 

An equivalent question is asked concerning the sufficiency for “failure” – i.e. confidence that the 

higher level proposition is completely false.  

The sufficiency parameter can take a value between 0 (insufficient) and 1 (completely sufficient) 

– a greater level of sufficiency results in confidence values associated with the child hypothesis 

being propagated more strongly up the hierarchy. 

Within each set of sibling child hypotheses at a given level in the logical hypothesis model 

hierarchy, there is a chance that some of the contributing information may be overlapping, or 

shared, perhaps because of reliance on a common evidence source or argument.  This is 

reflected in the dependency parameter, which describes the degree of commonality that is 

understood to exist between contributing hypotheses. The role of dependency in the quantitative 

propagation of confidence through the hypothesis model is to avoid double-counting of the 

support provided by mutually dependent items of evidence. It therefore provides a subtractive 

element to the propagation algorithm. In eliciting dependency, the question is asked: 

How much shared information do the child hypotheses use in contributing to the confidence 

for/against the parent? 

The value of dependency is a property of the parent hypothesis. It varies between 0 and 1, 

where 0 means that the confidence provided by the siblings is independent, and 1 means that 

the confidence provided by the siblings is maximally dependent – with, for example, one sibling 

hypothesis not providing any additional confidence because it is already provided by another. 

Subsets of sibling hypotheses may have different levels of dependency. Note that a subset of 

sibling hypotheses cannot have a smaller dependency value than the set that encompasses it. 

In other words, for 3 sibling hypotheses, if                then                    , where        is 

the dependency between the sibling hypotheses  ,   and  . 

A visual representation of sufficiency and dependency is shown in Figure 7, in which the 

relationship between confidence for (or against) a parent hypothesis, H, and confidence for (or 

against) two sibling child hypotheses,    and   , is illustrated in the form of a Venn diagram. 
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Here the sufficiency of a child hypothesis is demonstrated by the amount it overlaps its parent. If 

a hypothesis is completely sufficient (a value of 1), it will completely overlap its parent. Likewise 

the overlap between sibling hypotheses is linked to the dependency,  .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Schematic diagram of the ESL parameters sufficiency and dependency. The field 
outlined in red is a measure of confidence in H arising for confidence in C1 and C2, 
while not double counting dependency between C1 and C2. 

 

Parameter values for sufficiency and dependency are necessarily assigned by expert judgment. 

Eliciting numerical values directly may be difficult where the hypothesis definition is imprecise or 

complex. In such cases an alternative process is to judge sufficiencies and dependencies using 

linguistic terms, such as “Very High”, “High”, “Intermediate”, “Low” and “Very Low”, which are 

subsequently mapped to numerical form for computational purposes, using a mapping scheme 

defined beforehand. As with all linguistic to numerical conversions, it is important that all 

contributing experts understand the conversion factors that have been used and have the 

opportunity to modify, revise or refine their initial judgment if the conversion appears to 

misrepresent their intention. The present version of TESLA (Version 2.2) does not allow users to 

define linguistic to numerical conversions directly for sufficiencies and dependences, but does 

allow such mapping to be defined for confidence judgments based on the face value of 

evidence. 

Difficulties can arise in eliciting values of the dependency parameter, as there may be 

considerable uncertainty regarding the degree of shared information, or where (as noted above) 

there may be different degrees of dependency between different sibling hypotheses. For this 

reason, where alternative hierarchical model structures exist for a given root hypothesis, it can 

be preferable to adopt one in which levels of dependency are as low as possible. 

H 

C1 

C2 

Confidence in H due to 
C2 (related to the 
sufficiency of C2 to 
satisfy H, and the 
confidence in C2) 

P(H) 

Confidence in H due to C1 
(related to the sufficiency 
of C1 to satisfy H, and the 
confidence in C1) 

Overlap in confidence due 
to C1 and C2 (related to the 
dependency between C1 
and C2) 
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Bowden (2004) provides some hypothetical examples to illustrate the impact of the different 

combinations of logical operators on the propagation of confidence. Examples of the use of the 

ANY and ALL heuristics in combination with sufficiencies are given in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Example hypothesis model illustrating how degrees of confidence in hypotheses that 
closely relate to information or data (at the extreme right) are propagated to determine 
the degree of confidence in some root hypothesis of interest (at top left). An actual tree 
would typically be considerably larger than this example. 

 

Step 2b: Assessing Confidence on the Basis of 

Evidence 

Evaluating Evidence 

Judgments on evidence can be elicited in several ways; the standard approach followed in 

TESLA involves separate elicitation of “confidence for” and “confidence against” each leaf 

hypothesis. Because this depends on expert judgments, a helpful approach can be to use 

qualitative linguistic judgments in a similar way to that described for sufficiency and dependency 

above. TESLA allows users to define a mapping scheme between linguistic terms describing 

confidence judgments based on the face values of evidence and numerical values. 

There are many potential contributions to residual uncertainty in the treatment of evidence; 

 Incomplete knowledge concerning the leaf hypotheses in the logical hierarchy – we don’t 

understand all the issues involved; 

 Incomplete characterisation of the system – we don’t have all the data; 

 Uncertain quality – we have the data but we’re not sure of their reliability for use as 

evidence; 
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 Uncertain meaning – we have data but we’re unsure what they mean; 

 Conflict – we have relevant data from different sources which don’t agree, or too much 

confidence has been ascribed to the evidence; and 

 Variability – we have data but they don’t give us a unique answer. 

Even when there is no remaining uncommitted confidence or overcommitted confidence (i.e. 

when represented on scales of 0 to 1, confidence for and confidence against a hypothesis sum 

to 1) the balance of confidence may not be biased strongly towards either truth or falsehood of 

the hypothesis. This is because the odds may naturally not be stacked in favour of one outcome 

or another, and so obtaining further evidence may not change this. For example, if the 

hypothesis is that “Heads will face upwards after tossing a coin”, clearly there will be confidence 

for 0.5 and confidence against of 0.5. Additional evidence (e.g. provided by more coin tosses) 

would not change these judgments. In such a case, restructuring the hypothesis model to ask a 

slightly different question, or breaking down the hypothesis further to give a finer grained 

assessment of the available evidence may help. 

Bowden (2004) discusses a classification scheme for uncertainty to account for such 

contributions, based on the work of several authors (Foley et al., 1997; Funtowicz and Ravetz, 

1990; Hoffman-Reim and Wynn, 2002). As a general rule, however, a fundamental distinction 

can be made between those uncertainties in confidence that are intrinsic to the system under 

investigation (aleatory uncertainty) and those that relate to the ignorance of those who wish to 

understand and model the system (epistemic uncertainty). In principle, both types of uncertainty 

can be expressed using the language of probability theory; in practice, it can be helpful in the 

elicitation process, where specialists are examining the evidence in support of each child 

hypothesis in the logical model, to recognise and separate these two categories. 

In the application of ESL, when it is difficult to make a judgment of evidential support directly 

from the available evidence, it may be beneficial to split the judgment into two main steps. Firstly 

specialists are asked about the overall coverage of the knowledge base on which they are being 

asked to make judgments. That is, relative to the distribution of data (e.g. spatial or temporal) 

and “amount” of knowledge that they would ideally like to make a judgment, what is the 

distribution of data and “quantity” of knowledge that they actually have, recognising that this is a 

subjective judgment?  

For example, for judgments relating to groundwater quality, the data might describe observed 

concentrations for a number of dissolved contaminant species, but might miss a couple of 

contaminants known to be potentially significant; in this case the coverage might be poor. 

Alternatively, the data might be associated with very large uncertainty ranges that suggest poor 

data collection approaches, and then the “quality” might be considered suspect. 

Then, for the evidence that is available, a judgment is made about its “face value” in support of 

(or against) the hypothesis in question. This reflects the extent to which the evidence, if taken at 

face value and noting quality and coverage modifiers have already been taken into account, 

supports or refutes the hypothesis. 

It is recommended that “confidence for” and “confidence against” values for a hypothesis are 

elicited separately (whether elicited directly or using the coverage / quality / face-value approach 

as above). This can be done using a linguistic confidence scale, such as “Very confident”, 

“Confident” etc., which is then mapped to a numerical scale. 

In seeking first to understand the coverage of the knowledge base, it is possible to invite expert 

judgment in relation to the following questions: 
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(1a) How much evidence would you ideally wish to have in order to be confident in providing a 

judgment of confidence in support of, or against, the proposition? 

then 

(1b) In relation to the hypothetical ideal, how much evidence do you actually have on which to 

base a judgment? 

The ratio of the two answers gives an indication of coverage of the available evidence base, 

k(E), on a scale of 0 to 100%. Hence it is possible to provide an estimate of the “residual 

uncertainty due to lack of knowledge”, 1 - k(E), for the particular child hypothesis under 

consideration. Consideration of coverage of the evidence provides for the possibility of making 

firmer judgments based on data derived from a detailed investigation programme than that from 

a less mature knowledge base. 

As noted previously, elicitation is carried out in two stages, in which judgments are made first of 

the face value of the evidence and then a further judgment is made of the quality of the 

evidence. In other words, two questions are asked: 

(2a) Assuming that the evidence is of high quality and trustworthy what support does it give to 

confidence for (or against) the hypothesis? 

and then: 

(2b) How much faith do you have that the evidence on which you have based your judgment is 

of high quality and is trustworthy? 

Question (2a) is broadly equivalent to the evaluation of sufficiency in parameterisation of the 

hierarchical relationships between hypotheses in the logical model. Question (2b) extends the 

evaluation to an appraisal of the quality of the available evidence in order to modify its face 

value. The general procedure for using value functions to elicit quantitative measures of the 

degree of support provided by the evidence and its quantity and quality is illustrated by Figure 9.  

Figure 9: Use of value functions and linguistic variables to define membership categories for 
“face value” and “quality” of evidence (assuming complete coverage). 

The net value of the confidence for or against is determined by first selecting a value function 

that reflects judgment of the face value of that evidence. The appropriate location on that value 

function is then determined by judging the quality of the available evidence. In the example 

shown in Figure 9, the chosen value function reflects a judgment that the face value of the 

Very Low 

Low 

Moderate 

High 

Very High 
Very Low Low Moderate High Very High 

Face 

Value of 

Evidence 

Quality and Quantity of Evidence  

0 

Net confidence on the 

basis of evidence 1 
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evidence provides a moderate level of support the hypothesis being true. The net confidence in 

favour (    ) is then determined based on the judgment that the evidence is of moderate quality. 

The overall assessment of confidence in the evidence,     , then needs to take into account 

both the net value of the evidence that exists,     , and the previously estimated evidence 

coverage,     . Thus: 

               

Evaluation of the confidence against the hypothesis for a given leaf hypothesis is carried out 

separately but in essentially the same way. Assuming a normalised frame of reference for the 

assignment of confidence, then the “residual uncertainty” due to uncommitted confidence will be 

given by   (             ), and the residual uncertainty due to overcommitted confidence 

will be given by (             )   . (See Figure 3 and Figure 4, respectively). 

Assessing the Quality of Evidence 

A more detailed approach to assigning confidence values to evidence, whether quantitative or 

qualitative, can provide a more robust justification than is possible through the subjective 

linguistic response to a judgment of quality illustrated in Figure 10. As part of their NUSAP 

scheme for uncertainty analysis, Funtowicz and Ravetz introduced the concept of “Pedigree”, in 

which the origin and trustworthiness of knowledge is based on some measure of who has it, how 

it was derived and what went into its derivation (Funtowicz and Ravetz, 1990). The form of the 

Pedigree evaluation is a rectangular array, in which the columns represent different quality 

indicators. The cells in each column describe the particular criteria against which judgments are 

made in rank order from top to bottom (Funtowicz and Ravetz, 1990; van der Sluijs et al., 2002). 

The quality indicators used may vary depending upon the subject of the analysis and there are 

various approaches to combining evaluations of different quality indicators to produce an overall 

quality score.  

In a scientific context, the indicators given here (see Figure 10 and Text Box) are familiar 

confidence-building measures appropriate to the peer review process. These include, for 

example: theoretical basis, scientific method, auditability, calibration, validation and objectivity 

(Bowden, 2004). For each leaf hypothesis in the logical model for which evidence is assessed, 

confidence scores may be assigned to the evidence according to the various quality indicators. 

An overall quality score can then be calculated from the cumulative, normalised scores for the 

individual indicators. If so desired, the indicators themselves are weighted according to 

subjective judgment of their relative importance. Separate quality scores can be elicited for the 

supporting and refuting confidence. 

In practice, for a given ESL application, a thorough analysis of the available evidence, taking 

into account its quality, can be a resource intensive and time-consuming process, requiring 

detailed evaluation of individual items of relevant information and the way in which they are 

combined to make evidential judgments.  
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 Quality Indicators 
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Figure 10: Judgment of the “quality” of the information on which evidence is given, based on a 
number of defined quality indicators. 
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Text Box: Description of Data Quality Indicators. 

Step 3: Propagation of Confidence 

The mathematical algorithms used in ESL to propagate confidence on the basis of evidential 

judgments are founded on standard probability theory (Cui and Blockley, 1990). Within TESLA, 

the propagation of “confidence for” is treated independently from that for “confidence against”, 

but using the same algorithm derived using the principle of inclusion and exclusion of 

probabilities: 

  QUALITY INDICATORS 

Theoretical Basis 
This indicator is used to indicate whether the evidence under consideration conforms to  
well-established theory at one extreme or is pure speculation at the other. 

Scientific method 
As a general rule the scientific method follows the sequence, Observation; Formulation of  
hypothesis; Test hypothesis; Reject or fail to reject the hypothesis.  If rejected, a new  
hypothesis can be proposed and the process begun again. If not rejected, the hypothesis 
stands as a valid explanation of the observations. But, it is not necessarily the only valid  
explanation, there may be other equally valid alternative explanations of the observations  
and future observations or experiments could cause the hypothesis to be rejected. 
 This indicator provides a measure of how well the scientific method and best practice has  
been followed in the production of the information on which judgment of evidence has  
been made.  

Auditability 
No definitive, rule based methodology exists for data integration, interpretation and  
modelling. However, in order to demonstrate confidence in the models, it is essential to  
document and justify the sequence of conceptual and methodological steps contributing to 
specific interpretations such that an audit trail is discernible from the model to the data from 
which it has been conceived. This indicator provides a measure of how well the information  
presented can be traced back to the raw observations. 

Calibration and validation 
Models are abstractions of reality. Calibration may be used to confirm the legitimacy of  
the model as ‘consistent with all the observational data’, and validation may establish the  
model as permissible through some form of prediction testing but neither calibration nor 
validation can establish whether or not the model is correct. Nevertheless both calibration  
and validation are valuable and necessary confidence building measures for demonstrating  
quality in the modelling process. 
These indicators are used to make judgments on whether the information is a) calibrated 
to data and b) validated through independent measurement or prediction testing.  

Objectivity 
Whilst the scientific method provides a logical framework for improving understanding it 
does not guarantee objectivity. The influence of entrenched values, motivational bias and  
peer and institutional pressures may obscure true objectivity.  In order to maintain a check  
on the quality and objectivity of our interpretations we rely on peer review and exposure 
to critique through peer reviewed publication.   

This indicator is used to give a judgment on the extent to which the information can be  
said to be objective and free from bias. 
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where a linear mapping between statistical independence and complete dependence is used, 

based on the sufficiency weighted confidence values:  
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Here 

       is the calculated confidence value for ( ) or against (-) the parent hypothesis,  ; 

       is the calculated confidence value for ( ) or against (-) the child hypothesis,  ; 

    represents the set of all child hypotheses,  ; 

            represents all combinations of the subsets of the contributing hypotheses 

containing exactly   terms; 

    
  is the sufficiency of child hypothesis   for parent hypothesis  ; and 

    is the dependency between the subset of child hypotheses given by  . 

The number of operations required to calculate the confidence in a hypothesis grows rapidly 

with the total number of child hypotheses, increasing the emphasis on use of a supporting 

software tool. Nevertheless, a simple illustration of the parameterisation procedure, based on 

the above calculus for the propagation of confidence is shown in Figure 11. 

 

 

 

 

 

 

 

 

 

 

Figure 11: Propagation of confidence values in a hypothesis model.  The confidence values in 
the supporting and refuting evidence are given by    and    respectively, while the 
residual uncertainty due to uncommitted or overcommitted confidence is calculated as 
          (where positive U represents uncommitted confidence and negative 
U represents overcommitted confidence). 

Heuristics act to override the default propagation algorithm and are applied after this algorithm. 

ALL is modelled by direct propagation of the minimum confidence values from among the child 

hypotheses, i.e. 
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ANY is modelled by direct propagation of the maximum confidence values from among the child 

hypotheses, i.e. 

         
    

        

The symmetric necessity heuristic is applied using the following algorithm: 

Step 4: Analysis and Visualisation 

In decision making that is based on an open-world perspective on the available evidence, it is 

not possible to deal with absolute truths or in mathematical terms of accuracy and precision. 

What we are searching for is some measure of our confidence in our models and hypotheses; or 

in the case say of a choice between alternative models, some measure of our relatively greater 

confidence in one model compared to the alternatives. The ESL methodology works in 

quantitative terms, and the top-level result is a measure of overall confidence in the model, or 

hypothesis, under evaluation. However, care is required in the interpretation of such output, to 

avoid the GIGO (garbage in/gospel-out) epithet that is traditionally associated with apparently 

numerically precise output from fuzzy inputs. The primary inputs to the ESL process (logical 

set the parent’s confidence for and confidence against to the values obtained using the 
propagation algorithm 
 
if the children are necessarily true, then 
{ 

for every necessary child 
{ 

if its confidence for is less than a half and less than the parent’s current confidence 
for 

 { 
  set this as the parent’s confidence for 
 } 
 

if its confidence against is greater than a half and greater than the parent’s current 
confidence against 

 { 
  set this as the parent’s confidence against 
 } 
 
} 

} 
 
else if the children are necessarily false, then 
{ 

for every necessary child 
{ 

if its confidence for is greater than a half and greater than the parent’s current 
confidence for 
{ 

set this as the parent’s confidence for 
} 
if its confidence against is less than a half and less than the parent’s current 
confidence against 

 { 
set this as the parent’s confidence against 

 } 
} 

} 
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model parameterisation and evidence evaluation to elicit confidence) are best understood in 

terms of linguistic or verbal expressions of subjective judgment, and hence are essentially “soft” 

or “fuzzy”, terms. Ideally, the output should also be translated back into verbal qualifiers (in 

which case “FIFO” – fuzzy in-fuzzy out, might be a more appropriate acronym for the whole 

process). 

Sense checking and sensitivity analyses are key components of the tree development process. 

If tree analysis and visualisation indicates that the outcomes of the process cannot be easily 

rationalised given real-world experience and expectations of the outcomes, or if the outcomes 

are shown to be unduly sensitive to individual judgements, then that provides important 

feedback to the tree development and/or decision-making process. In such cases either the tree 

logic and confidence values needs to be reviewed and iterated to improve and update the 

model, or the outcomes are providing important input directly to subsequent decision processes 

as they indicate a potential need for a changed perspective on some of the key aspects relevant 

to the decision. In either case the sensitivity analysis process will inform upon the impact of 

uncertainty and priorities for either next steps in the tree development process or more broadly 

(e.g. for research activities). The use of such analyses can be particularly helpful where 

evaluating confidence values or logical approaches has proved challenging given the nature of 

the evidence, but in practice all trees typically benefit from some form of iterative analysis and 

final sense-checking of the outputs.  

Using TESLA, several complementary approaches to analysing and visualising an ESL analysis 

have been devised: the Evidence-Ratio Plot; the sensitivity (or Tornado) Plot; the Tree and 

Confidence Flow Line Plots; and the Portfolio Analysis Tool (Bowden, 2004; User Guide). These 

are described in turn below. 

Ratio Plot 

The Ratio Plot (Figure 12) provides a visual presentation of the levels of confidence of a chosen 

hypothesis (typically the root hypothesis) and all its descendants. The horizontal axis indicates 

the percentage uncertainty due to uncommitted confidence (white space in the Italian flag 

representation; Figure 3) or overcommitted confidence (yellow space in the Italian flag 

representation; Figure 4). The former plots to the right of the vertical axis (i.e. with positive 

values), while the latter plots to the left of the vertical axis (i.e. with negative values).  
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Figure 12: Regions of the Ratio Plot. 

 

The vertical axis provides an indication of the balance of confidence. This is expressed as the 

ratio of confidence for to confidence against associated with each hypothesis, displayed on a 

logarithmic scale. The confidence values used in the calculation of the ratio are constrained to 

have a minimum value of 0.01, resulting in a possible range of between 0.01 and 100. 

The location [0,1] on the ratio plot therefore represents a situation where there is a balance of 

confidence for and against (50% for and 50% against), with no residual uncertainty due to either 

overcommitted confidence or uncommitted confidence. This would be plotted at the intersection 

of the vertical and horizontal axes. Increasing residual uncertainty, while maintaining a balance 

of confidence for and against, results in movement either to the left or right along the horizontal 

axis, depending on whether or not there is conflict. 

Values plotted above the horizontal axis represent a balance of confidence indicating support for 

the hypothesis under consideration; those below the line represent a balance of confidence 

against support for the hypothesis. Regions representing greater than 50% confidence for and 

against respectively are shaded on Figure 12, providing a visual guide to the extent of support 

that is judged to exist. In complex logical models with high levels of overcommitted confidence 

(to the left of the vertical axis) or uncommitted confidence (to the right of the vertical axis), the 

confidence ratios will still be an important confidence measure. In these cases, and in cases 

where hypotheses have confidence ratios near the middle of the range, conflict resolution will be 

important if the conflicts between confidence for and against are judged to have a significant 

impact on confidence in the root hypothesis. 

It can be informative to plot confidence in the root hypothesis from the ESL model as a result of 

evidence evaluations at the leaf level on the same diagram, set against the background of the 

individual levels of confidence for each leaf hypothesis in the logical model. This can provide a 

strong visual indicator of the potential implications of bias. For example, in situations where an 

“outlier” piece of evidence is strongly (or even exclusively) relied upon in order to justify an 

overall conclusion, the root hypothesis will inevitably be skewed towards that location on the 

Ratio Plot. By contrast, where full account is taken of the balance of confidence, including the 
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possible weight of contradictory evidence and residual uncertainty due to under- and over-

committed confidence, the “true” evidential support for the top-level hypothesis can be clearly 

visualised. 

Tornado Plot 

The Tornado Plot (also known as the Sensitivity Plot) indicates the sensitivity of confidence in 

the root hypothesis to small changes in confidence in each of the leaf hypotheses, referred to as 

“impact”. 

The derivation of the impact of each leaf hypothesis is a first-order differential calculation, and is 

implemented in TESLA by temporarily incrementing its confidence values by a marginal amount, 

noting the change in confidence values of the top hypothesis. The impact is thus defined by the 

ratio of the change in confidence for the root hypothesis to the change in confidence for the leaf 

hypothesis. 

The impact for each leaf hypothesis is converted to a percentage and plotted as a horizontal 

bar, a green one to indicate sensitivity to confidence for, and a red one to indicate sensitivity to 

confidence against. The hypotheses are then plotted in descending order of total impact, 

thereby giving the whole plot its tornado-like appearance from which it takes its name. An 

example is illustrated in Figure 13.  

 

Figure 13: Example Tornado Plot. 

 

In effect, such calculations provide a measure of the “value of information” associated with the 

ESL model under study. This, in turn, can be used to support decision making, through an 

analysis of the confidence-building implications of alternative data acquisition or conflict 

resolution strategies. 

Note that it is important to consider the implications of logical “switches” such as ANY and ALL 

operators and necessary hypotheses within the tree in evaluating overall sensitivities. As the 

Tornado Plot is calculated on the basis of marginal differences at the leaf level, it does not take 

into account the implications of major switches in logic elsewhere. Therefore, it may be 

necessary to construct several Tornado Plots, for example one considering each major line of 

reasoning in the tree, to fully understand sensitivities by exploring confidence judgements that 

could trigger changes in lines of propagation. 
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Tree Display 

TESLA has been designed as a flexible tool for decision modelling, with an emphasis on the 

ability to manipulate the hierarchical structure of the decision (as well as data input and 

parameterisation) as it evolves, coupled with a graphical user interface to promote group 

working.  

An important aspect of the TESLA interface, from the perspective of describing its application, is 

the Tree Display. An example TESLA tree display is shown in Figure 14.  

The hierarchical hypothesis model is displayed in TESLA in a collapsible tree view format. Lines 

connect associated hypotheses in the tree, with child hypotheses appearing below and to the 

right of their parent hypothesis. Thus, the root hypothesis is located to the far top left, and the 

leaf hypotheses to the far right of the display. 

 

Figure 14: Example of ESL visualisation in the TESLA “tree display” (zoomed-out view). 

Confidence in a hypothesis in the ESL model is displayed graphically using the “Italian flag” 

representation described earlier. Thus a bar is shown with a green portion stemming from the 

left (showing the confidence in favour), and a red portion stemming from the right (showing the 

confidence against). The section of the bar in between the red and green portions is white to 

indicate the uncommitted confidence, or coloured yellow when there is overlap in the case of 

overcommitted confidence. 

Numeric values for sufficiency are shown to the left of the confidence display bar for each child 

hypothesis in the model. “Sufficiency for” and “sufficiency against” are coloured green and red, 

respectively. If logical operators are used, the words “ANY” or “ALL” are shown to the left of the 

confidence display, as required. If an individual child hypothesis is deemed to be a necessity, 

then the background to the display icon for that particular child hypothesis is shaded. A light 

green background indicates “necessarily true” and a light red background indicates “necessarily 

false” using the symmetric necessity heuristic. A light grey background indicates a necessary 

node using the asymmetric necessity heuristic. 

The dependency parameter is displayed in the tree view beneath the Italian flag. It relates to the 

dependency between child nodes of the given hypothesis. If a “general dependency” value has 

been set then its numeric value is indicated. However, as noted previously, it is possible in 

situations where there are multiple sibling child hypotheses for the degree of dependency to 

differ between different groupings of siblings. If one or more alternative dependency values have 

been set for groups of child hypotheses this is indicated by an asterisk (*). 
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Confidence Flow Lines 

Confidence flow lines and percentage contributions of confidence in the leaf hypotheses to 

confidence in the root hypothesis can be added to the tree plot to provide additional information 

about the flow of confidence through the tree. The flow lines can help to identify which leaf 

hypotheses (and ultimately, evidence sources) are contributing (or not contributing) to the root 

hypothesis outcome and by how much. They can also be used to check the influence of logic on 

the propagation of confidence through the tree.  

Figure 15 demonstrates these features. The widths of the flow lines reflect the relative 

contributions to confidence. The percentage figures at the leaf level indicate the relative overall 

contribution of the leaf hypotheses to root hypothesis confidence.  

In this example, the flow lines highlight where confidence in the root hypothesis “Material 

emplaced deep underground will not cause harm” originates. In particular, it shows that 79% of 

confidence “for” the root comes from the leaf hypothesis “Quality assurance documentation 

supports correct implementation” with a further significant contribution from “Anecdotal evidence 

from site workers supports correct implementation”.  

The figure also shows the effect of ANY and ALL logic with several leaf hypotheses providing 

zero contribution to confidence “for” the root hypothesis, because a hypothesis on another 

branch provides a lower level of confidence and that flow line is selected through he ALL switch.   
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Figure 15: The Flow of Confidence for the Umbrella Example.  The flow lines show the 
contribution of confidence in the leaf hypotheses to confidence in the root hypothesis. 

Portfolio Tool 

The “portfolio tool” is a development of the tree plot that allows a user to compare, in one 

diagram, multiple hypothesis models that have the same structure, but different confidence 

values (Figure 16). This plot is often used to compare the performance of different options with 

different associated evidence bases using a common framework. For example, the portfolio tool 

can be used to compare the judged suitability of different potential sites for storing CO2 

underground, where there are different datasets available for each site. Such a plot can also be 

used to show the evolution of performance with time, by recording confidence on the basis of 

evidence at different times during an evidence collection / collation process (e.g. site 

investigation or experiment). 
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Figure 16: Example application of the portfolio tool to compare two instances (“Phase 1” and 
“Phase 2”) of a hypothetical tree with different confidence values. 

 

TESLA Downloads and Further Information 

 

For full details of how to use the software please refer to the TESLA User Guide, which is 

shipped with the executable. An evaluation version of TESLA is available for download via the 

Quintessa website: 

http://www.quintessa.org/software/TESLA/ 

The website also provides guidance on purchasing a license to unlock its full functionality. 

 

        

        

http://www.quintessa.org/software/TESLA/
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Glossary of Terms 

Term Definition 

Dependency 
Value between 0 and 1 indicating the amount of confidence in two or more 
sibling hypotheses that is based upon the same evidence or judgments on 
evidence. 

ESL 
Evidence Support Logic, an approach to analysing confidence in hypotheses on 
the basis of available evidence, and supported by a mathematical algorithm 
founded on Interval Probability Theory. 

Confidence Against 
Value between 0 and 1 indicating the strength of confidence that a hypothesis is 
false, based on evidence. 

Confidence For 
Value between 0 and 1 indicating the strength of confidence that a hypothesis is 
true, based on evidence. 

Child Hypothesis 
A hypothesis that has a parent hypothesis (i.e. any but the root hypothesis). A 
child hypothesis occurs at the next level down the tree structure from its parent 
hypothesis. 

Hierarchical Hypothesis 
Model 

The decomposition of a single hypothesis (the root hypothesis) into a number of 
more specific hypotheses, which in turn may be broken down into even more 
specific hypotheses until a point is reached where the hypothesis is sufficiently 
well defined for factual information to be judged readily. This results in a tree-like 
hierarchy. 

Hypothesis 
An assertion to be evaluated, represented as a node in the tree. Supported or 
refuted by lines of reasoning on the basis of evidence.  

Leaf Hypothesis 
This is the only class of hypothesis for which confidence based on the available 
evidence can be input by the user; found at the lowest level of the tree. There 
can be many leaf hypotheses. 

Necessity 

Indicates that confidence in the truth of a hypothesis is necessary for confidence 
in its parent, irrespective of the confidence provided by its siblings, or 
alternatively that confidence in the falsehood of a hypothesis is necessary for 
confidence in its parent irrespective of the confidence provided by its siblings. 

Parent Hypothesis 
A hypothesis with one or more child hypotheses (i.e. any but the leaf 
hypotheses). 

Propagation 
The calculation of confidence in parent hypotheses by combining the confidence 
in its child hypotheses based on a user-specified ESL parameterisation. 

Root Hypothesis 

The root hypothesis is the one at the highest level of the tree and has no parent 
hypotheses. After confidence propagation, the root hypothesis indicates the 
confidence and residual uncertainty in the main hypothesis associated with a 
decision. 

Sibling Hypotheses Hypotheses that share the same parent. 

Sufficiency 

A numerical value that indicates how much judgments of confidence in a child 
hypothesis (for or against) contribute to confidence (for or against) in the parent 
hypothesis. A sufficiency answers the question “If this child hypothesis is true (or 
false), and I know nothing else, then what is my confidence that the parent is true 
(or false)?” 

Tree Graphical representation of a hierarchical hypothesis model 
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Term Definition 

Uncommitted 
confidence 

Positive value ≤1, indicating the extent to which confidence in the truth or 
falsehood of a hypothesis cannot be assigned owing to lacking evidence. 
Numerically it is represented as: 

1 – confidence for – confidence against, 

where confidence for and confidence against are each represented on a 
numerical scale of 0 to1 and confidence for + confidence against <1.  

Overcommitted 
confidence 

Positive value ≤1 that measures the overlap between confidence that a 
hypothesis is true and confidence that the hypothesis is false. It is a measure of 
overconfidence in judgments of confidence for and / or confidence against a 
hypothesis. Numerically it is represented as: 

confidence for + confidence against - 1,  

where confidence for and confidence against are each represented on a 
numerical scale of 0 to1 and confidence for + confidence against >1. 
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